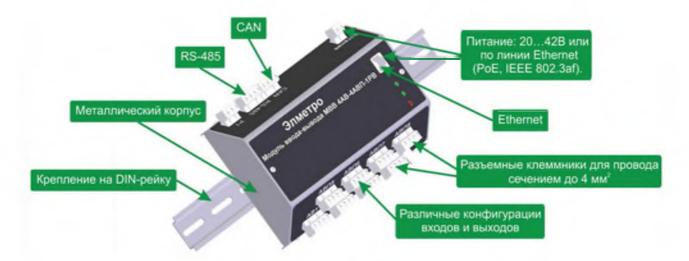

По вопросам продаж и поддержки обращайтесь: emr@nt-rt.ru || www.emr.nt-rt.ru

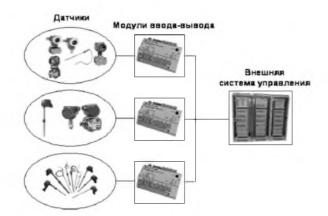

Астана: +7(7172)727-132 Архангельск: (8182)63-90-72 Белгород: (4722)40-23-64 Брянск: (4832)59-03-52 Владивосток: (423)249-28-31 Волгоград: (844)278-03-48 Вологда: (8172)26-41-59 Воронеж: (473)204-51-73 Екатеринбург: (343)384-55-89 Иваново: (4932)77-34-06 Ижевск: (3412)26-03-58 Казань: (843)206-01-48 Калининград: (4012)72-03-81 Калуга: (4842)92-23-67 Кемерово: (3842)65-04-62 Киров: (8332)68-02-04 Краснодар: (861)203-40-90 Красноярск: (391)204-63-61 Курск: (4712)77-13-04 Липецк: (4742)52-20-81 Магнитогорск: (3519)55-03-13 Москва (495)268-04-70 Мурманск: (8152)59-64-93 Набережные Челны: (8552)20-53-41 Нижний Новгород: (831)429-08-12 Новокузнецк: (3843)20-46-81 Новосибирск: (383)227-88-73 Орел: (4862)44-53-42 Оренбург: (3532)37-68-04 Пенза: (8412)22-31-16 Пермь: (342)205-81-47 Ростов-на-Дону: (863)308-18-15 Рязань: (4912)46-61-64 Самара: (846)206-03-16 Санкт-Петербург: (812)309-46-40 Саратов: (845)249-38-78 Смоленск: (4812)29-41-54 Сочи: (862)225-72-31 Ставрополь: (8652)20-65-13 Тверь: (4822)63-31-35 Томск: (3822)98-41-53 Тула: (4872)74-02-29 Тюмень: (3452)66-21-18 Ульяновск: (8422)24-23-59 Уфа (347)229-48-12 Челябинск: (351)202-03-61 Череповец: (8202)49-02-64 Ярославль: (4852) 69-52-93

# МОДУЛИ ВВОДА-ВЫВОДА ЭЛМЕТРО-МВВ

- Гальваническая изоляция всех входных и выходных цепей.
- Период опроса 0,1с (полный цикл опроса всех каналов).
- Источник питания датчиков.
- Математическая обработка входных данных.
- Монтаж на DIN-рейку, возможно применение в «поле» (t=-40...+70°C).
- Локальное регулирование и сигнализация.
- 54 свободно программируемых уставок.
- Соответствие современным требованиям ЭМС.
- Встроенные интерфейсы: RS-485 (Modbus RTU), CAN 2.0, Ethernet (Modbus TCP). ОРСсервер для интеграции в имеющуюся АСУТП.
- Возможность питания по линии Ethernet.
- Широкий набор конфигураций.
- Вычисление расхода сред в соответствии с ГОСТ 8.586.(1-5)-2005.
- Зарегистрирован в Государственном реестре средств измерений под №40652-09, сертификат №35328.



Наличие открытых протоколов Modbus и CAN позволяет интегрировать модули ввода-вывода в существующую (или планируемую) на Вашем предприятии АСУТП, а это, в свою очередь, обеспечивает оперативный и простой доступ к измерениям, конфигурированию, управлению.








Модули ввода-вывода ЭЛМЕТРО-МВВ предназначены для получения и преобразования сигналов различных датчиков распределенных систем сбора данных, и передачу полученной информации по каналам физических интерфейсов RS-485, CAN, Ethernet или беспроводному интерфейсу на верхний уровень АСУ ТП. Модули ориентированы на построение систем управления производственными процессами в областях промышленности с жесткими условиями эксплуатации. Модули могут использоваться как автономно, так и интегрироваться во внешнюю систему управления.

Модули ЭЛМЕТРО могут устанавливаться в «поле», в непосредственной близости от датчиков. Таким образом, применение модулей ЭЛМЕТРО обеспечивает следующие преимущества:



- устраняет возможность возникновения помех на длинных аналоговых линиях связи, из-за отсутствия таковых;
- экономия на линиях связи (особенно на термокомпенсационных проводах);
- система становиться структурированной, более простой и доступной при обслуживании.

Основные функции, выполняемые модулями ввода-вывода ЭЛМЕТРО-МВВ:

- измерение (сбор данных с аналоговых и дискретных датчиков);
- построение системы сигнализации и/или управления (возможность позиционного регулирования);
- вычисление расхода сред в соответствии с ГОСТ 8.586.(1-5)-2005;
- передача информации на верхний уровень АСУТП, на сервисный ПК или APM оператора;
- передача информации с помощью токовых выходов (функция нормирующего преобразователя).

#### Конфигурации

Модуль имеет несколько конфигураций, различающихся различным сочетанием аналоговых и дискретных входов/выходов, поддержкой передачи питания через Ethernet (PoE), исполнением для взрывобезопасных и взрывоопасных условий. Возможные типы конфигураций модулей приведены в таблице 1.

Таблица 1. Конфигурации модулей ввода-вывода

|    | Кол-ве                                      | э входов | (выходов  | ) по типам                |    | Коды заказ  | а по исполнениям |
|----|---------------------------------------------|----------|-----------|---------------------------|----|-------------|------------------|
| AB | В АВП AE ДВ <sup>2)</sup> Р <sup>1)</sup> С |          | Общепром. | Общепром.+ Ethernet (РоЕ) |    |             |                  |
| 8  | -                                           | -        | -         | 1                         | -  | 8AB         | 8AB-Eth          |
| 4  | -                                           | 4        | -         | 1                         | -  | 4AB-4AE     | 4AB-4AE-Eth      |
| 4  | -                                           | -        | 4         | 8+1                       | -  | 4AB-4ДB-8P  | 4AB-4ДB-8P-Eth   |
| 4  | -                                           | -        | 4         | 1                         | 8  | 4АВ-4ДВ-8С  | 4AB-4ДB-8C-Eth   |
| 4  | 4                                           | -        | -         | 1                         | -  | 4AB-4AB⊓    | 4AB-4AB∏-Eth     |
| -  | 8                                           | -        | -         | 1                         | -  | 8АВП        | 8AB∏-Eth         |
| -  | 4                                           | 4        | -         | 1                         | -  | 4AB∏-4AE    | 4AB∏-4AE-Eth     |
| -  | 4                                           | -        | 4         | 8+1                       | -  | 4AВП-4ДВ-8Р | 4АВП-4ДВ-8Р-Eth  |
| -  | 4                                           |          | 4         | 1                         | 8  | 4ABП-4ДВ-8C | 4АВП-4ДВ-8С-Eth  |
| -  | -                                           | 4        | -         | 8+1                       | -  | 8P-4AE      | 8P-4AE -Eth      |
| -  | -                                           | -        | 4         | 16+1                      | -  | 4ДВ-16Р     | 4ДВ-16P-Eth      |
| -  | -                                           | -        | 4         | 1                         | 16 | 4ДВ-16С     | 4ДВ-16C-Eth      |

<sup>1)</sup> в любой конфигурации присутствует минимум 1 релейный выход

2) дискретные входы по ГОСТ Р 51841-2001

### Обозначения:

АВ – аналоговые входы;

АВП – аналоговые входы с выходом питания;

АЕ – аналоговые выходы (токовые);

#### Аналоговые входы (АВ)

Входные каналы модулей универсальные и могут быть свободно переконфигурированы потребителем. Каждый канал предоставляет возможность

ДВ – дискретные входы;

Р – релейные выходы (реле);

С – симисторные выходы.

выполнить математическую обработку данных, позволяющую вычислять и представлять на экране значения физических величин, являющихся функциями входных аналоговых и/или импульсных сигналов.

Таблица 2. Измерение электрических сигналов в виде тока, напряжения и сопротивления

| Функция                 | Диапазон<br>измерений         |                          |                                      | Пределы допускаемой дополнительной погрешности на каждые 10 °C в диапазоне -4015 °C, 3570 °C, ± |
|-------------------------|-------------------------------|--------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------|
| Измерение тока          | ± (0 – 23) mA                 | 1 мкА                    | ±(0,05%ИВ+8мкА)                      | 0,05% ИВ                                                                                        |
| Измерение напряжения    | ±(0 – 110) MB<br>±(0 – 1,1) B | 1 <b>0</b> мкВ<br>0,1 мВ | ±(0,05%ИВ+20мкВ)<br>±(0,05%ИВ+0,4мВ) | 0,025% ИВ<br>0,025% ИВ                                                                          |
| Измерение сопротивления | 0 – 325 Ом                    | 0,1 Ом                   | ±(0,05%+0,13 Om)                     | 0,05% ИВ                                                                                        |

Обозначения: ИВ – значение измеряемой величины

Таблица 3. Измерение сигналов термопреобразователей сопротивления

|                 | Тип TC Диапазон,<br>°C    |                | Пределы допу-<br>скаемой основ-<br>ной погрешно-<br>сти, ±°C | Пределы дополнительной абсолютной погрешности на каждые 10°С в диапазоне -4015°C, 3570°C, ± | Единица<br>младшего<br>разряда, °С |  |
|-----------------|---------------------------|----------------|--------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------|--|
|                 | 50□ (W100=1.3910)         | -199850        | 0,8+0,0009*T                                                 |                                                                                             |                                    |  |
| Платиновые      | 100□ (W100=1.3910)        | -199620        | 0,5+0,0007*T                                                 | 0.14.0.0006*T                                                                               | 0,1                                |  |
| (ТСП)           | Pt - 50 (W100=1.3850)     | -195845        | 0,8+0,0009*T                                                 | 0,14+0,0006*⊤                                                                               |                                    |  |
|                 | Pt - 100 (W100=1.3850)    | -195630        | 0,5+0,0007*T                                                 |                                                                                             |                                    |  |
|                 | 50M (W100=1.4280)         | -184200        | 0,8+0,0005*T                                                 |                                                                                             |                                    |  |
| Медные          | 100M (W100=1.4280)        | -184200        | 0,5+0,0005*T                                                 |                                                                                             |                                    |  |
| (TCM)           | Cu - 50 (W100=1.4260)     | <b>-4919</b> 9 | 0,8+0,0005*T                                                 | 0,12+0,0005*T                                                                               |                                    |  |
|                 | Cu - 100 (W100=1.4260)    | -49199         | 0,5+0,0005*T                                                 |                                                                                             |                                    |  |
| Никелевые (ТСН) | 100H Ni -10 (W100=1.6170) | -60180         | 0,4                                                          |                                                                                             |                                    |  |

Обозначения: Т – значение измеряемой температуры

Таблица 4. Измерение сигналов термоэлектрических преобразователей

| Тип ТП                | Диапазон, °С | Пределы основной по-<br>грешности, ±°C | Пределы дополнительной абсолютной по-<br>грешности на каждые 10 °C в диапазоне<br>-4015 °C, 3570 °C, ± | Единица<br>младшего<br>разряда, °C |  |  |
|-----------------------|--------------|----------------------------------------|--------------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| A-1 (TBP)             | 0400         | 2,6-0,003*T                            | 0.0004*T                                                                                               |                                    |  |  |
| A-1 (1BP)             | 4002200      | 0,8+0,0015*⊤                           | 0,0004*1                                                                                               |                                    |  |  |
| A-2 (TBP)             | 0300         | 2,8-0,005*T                            |                                                                                                        |                                    |  |  |
| A-2 (10F)             | 3001800      | 1+0,0012*T                             | 0,0003*T                                                                                               |                                    |  |  |
| A-3 (TBP)             | 0300         | 2,6-0,004*T                            | 0,0003"1                                                                                               |                                    |  |  |
| A-3 (1BP)             | 3001800      | 1+0,0012*T                             |                                                                                                        |                                    |  |  |
| J (TЖK )              | -2000        | 0,4-0,004*T                            | 0,04-0,0006*T                                                                                          |                                    |  |  |
| ) (IWK)               | 01000        | 0,4+0,0005*⊤                           | 0,04+0,0002*T                                                                                          |                                    |  |  |
| R (T∏∏ 13)            | -49200       | 5-0,013*T                              |                                                                                                        | 0,1                                |  |  |
| K (IIIII 13)          | 2001767      | 2,4                                    | 0.06+0.0002*T                                                                                          |                                    |  |  |
| S (TПП 10)            | -49200       | 4,7-0,011*T                            | 0,06+0,0002*1                                                                                          |                                    |  |  |
| 3 (1111110)           | 2001700      | 2,4+0,0002*T                           |                                                                                                        |                                    |  |  |
| В (ТПР)               | 5001000      | 5,7-0,0032*T                           | 0,03+0,0001*T                                                                                          |                                    |  |  |
| B (IIIP)              | 10001820     | 2,5                                    | 0,03+0,0001*1                                                                                          | ] ",'                              |  |  |
| E (TXKH)              | -2000        | 0,4-0,004*T                            | 0,04-0,0006*T                                                                                          |                                    |  |  |
| E (TANH)              | 01000        | 0,4+0,0005*⊤                           | 0,04+0,0002*T                                                                                          |                                    |  |  |
| N (THH)               | -2000        | 0,8-0,007*⊤                            | 0,05-0,0007*T                                                                                          |                                    |  |  |
| N (IDD)               | 01300        | 0,8+0,0004*T                           | 0,05+0,0002*T                                                                                          |                                    |  |  |
| K (TXA)               | -2000        | 0,55-0,005*T                           | 0,03-0,0007*T                                                                                          |                                    |  |  |
| K (IAA)               | 01300        | 0,55+0,0007*T                          | 0,03+0,0003*T                                                                                          |                                    |  |  |
| M (TMK)               | -200100      | 0,06-0,007*T                           | 0,06-0,0005*T                                                                                          | 1                                  |  |  |
| I'I (II'IK)           | -100100      | 0,6-0,0015*T                           | 0,00-0,0005"                                                                                           |                                    |  |  |
| T (TMK <sub>H</sub> ) | -2000        | 0,55-0,005*T                           | 0,03-0,0006*T                                                                                          |                                    |  |  |
| I (IIINH)             | 0400         | 0,55                                   | 0,03+0,0001*T                                                                                          |                                    |  |  |
| I (TVK)               | -2000        | 0,35-0,003*T                           | 0,03-0,0006*T                                                                                          |                                    |  |  |
| L (TXK)               | 0790         | 0,35+0,0004*T                          | 0,03+0,0002*T                                                                                          |                                    |  |  |

<sup>1.</sup> Без учета погрешности измерения температуры холодного спая

<sup>2.</sup> Пределы допускаемой абсолютной погрешности канала компенсации температуры холодного спая  $\pm 1^{\circ}$ С 3. Т- значение измеряемой температуры



Таблица 5. Измерение сигналов пирометров

| Типы<br>градуировок<br>пирометров | Пределы<br>Диапазон, °C допускаемой основной<br>погрешности, ±°C |              | Пределы дополнительной абсолютной погрешности на каждые 10 °C в диапазоне -4015 °C, 3570 °C, ± | Единица<br>младшего<br>разряда,°С |  |
|-----------------------------------|------------------------------------------------------------------|--------------|------------------------------------------------------------------------------------------------|-----------------------------------|--|
| PK-15                             | 400700                                                           | 24-0,03*T    |                                                                                                |                                   |  |
| PN-15                             | 7001500                                                          | 5-0,003*T    |                                                                                                |                                   |  |
| PK-20                             | 600900                                                           | 10,2-0,009*T |                                                                                                |                                   |  |
| PN-20                             | 9002000                                                          | 3-0,001*T    | 0.0001*T                                                                                       | 0,1                               |  |
| PC-20                             | 9001750                                                          | 3,6-0,0016*T | 0,0001*1                                                                                       |                                   |  |
| PC-20                             | 17502000                                                         | 3            |                                                                                                |                                   |  |
| PC-25                             | 12001650                                                         | 6,5-0,003*T  |                                                                                                |                                   |  |
| PC-25                             | 16502 <b>5</b> 00                                                | 1,8          |                                                                                                |                                   |  |

Примечание – Т- значение измеряемой температуры

# Аналоговые унифицированные входы с каналами питания датчиков (АВП)

Аналоговые входы с выходом питания (АВП) рассчитаны на подключение датчиков с выходным сигналом силы постоянного тока и / или датчиков с выходным сигналом напряжения постоянного тока.

Каждый вход имеет встроенный изолированный преобразователь напряжения (20В, до 25мА) для обеспечения питания подключаемых датчиков.

Таблица 6. Измерение сигналов входами АВП

| Функция                 | Диапазон | Единица млад-<br>шего разряда | Пределы основной погрешно-<br>сти в диапазоне температур<br>от 15 до 35°C | Пределы дополнительной абсолютной погрешности на каждые 10 °C в диапазоне -4015 °C, 3570 °C, ± |  |
|-------------------------|----------|-------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|
| Измерение тока          | -2+23 mA | 1 мкА                         | ±(0,05%ИВ+8мкА)                                                           | 0,05% ИВ                                                                                       |  |
| Измерение<br>напряжения | -1+11 B  | 0,1 мВ                        | ±(0,05%ИВ+4мВ)                                                            | 0,05% ИВ                                                                                       |  |

Обозначения: ИВ – значение измеряемой величины

## Аналоговые выходы (АЕ)

Узел аналоговых выходов предназначен для преобразования заданных численных значений в аналоговые токовые сигналы и служат для подключения различных исполнительных устройств с соответствующим токовым входом (0-5, 0-20, 4-20). Токо-

вый сигнал может быть сконфигурирован либо как управляющий в задаче регулирования, либо как информационный (реализуется функция нормирующего преобразователя). Характеристики выходов АЕ приведены в таблице 7.

Таблица 7. Характеристики аналоговых выходов

| Функция               | Диапазон<br>воспроиз-<br>ведения | Единица<br>младшего<br>разряда | Пределы основной погрешности в диапазоне температур от 15 до 35 °C | Пределы дополнительной абсолютной погрешности на каждые 10 °C в диапазоне -4015 °C, 3570 °C, ± |
|-----------------------|----------------------------------|--------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|
| Воспроизве-дение тока | (0 - 22) mA                      | 1 мкА                          | ±(0,05%B3+8mkA)                                                    | ±(0,05%B3+8mKA)                                                                                |

Обозначения: ВЗ – воспроизводимое значение

# Дискретные входы (ДВ)

Модули ввода-вывода могут иметь дискретные входы со следующими техническими характеристиками:

- гальваническая изоляция общая, все входы изолированы от цепей питания модуля;
- внутренний изолированный преобразователь напряжения, для питания вспомогательных внешних цепей (с защитой от «короткого» замыкания);
- контроль обрыва цепи (для «сухих» контактов);
- типы считываемых сигналов:
  - «сухой» контакт (открытый коллектор);
  - потенциальный (по ГОСТ Р 51841-2001);
  - частотно-импульсный (0...1кГц при подсчете импульсов, 0...11кГц при измерении частоты);
  - сигналы датчиков NPN/PNP типа.

## Релейные и симисторные выходы (Р/С)

Релейные выходы модулей могут использоваться для:

- управления внешним оборудованием
- сигнализации
- регулирования

Коммутируемые напряжения и токи релейных выходов:

- для активной нагрузки: ~250В / =30В / 3А
- для реактивной нагрузки: ~250B / =30B / 1,5A
  (COS = 0,75...0,8)

Вместо релейных выходов в модулях могут применяться симисторные выходы, предназначенные для коммутации маломощных нагрузок до 100 Вт или управления внешними мощными симисторами (тиристорами). Все выходы оптически изолированы от остальной схемы и имеют встроенный детектор перехода через ноль. Параметры симисторных выходов:

- напряжение коммутации: ~270 В макс., 50(60) Гц
- коммутируемый ток: 0,5 А (среднеквадр.)

- импульсный неповторяющийся ток: 25 А макс. Ти=20 мс
- ток удержания: не менее 15 мА

#### Математические каналы

Помимо того, что в модулях каждый аналоговый вход (АВ и АВП) может являться математическим, для расширения возможностей предусмотрено два дополнительных математических канала. Каждый канал обеспечивает математическую обработку данных, позволяющую вычислять и передавать значения физических величин, являющихся функциями входных аналоговых и/или дискретных сигналов.

# Функция вычислителя расхода сред и корректора газа

Модули могут обеспечивать вычисление расхода сред в соответствии с ГОСТ 8.586.(1-5)-2005 и приведение его к нормальным условиям.

Таблица 8. Характеристики модулей при вычислении расхода

| Среда          | Диапазон входных величин                                                                                                                      | Пределы основной относительной погрешности вычисления |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| Природный газ  | $250 \le T$ , K $\le 340$<br>0,1 $\le P$ , МПа $\le 12$<br>При использовании методов расчета по УС GERG-91 мод., NX19 мод. по ГОСТ 30319.2-97 | 0,001 %                                               |
| Вода           | 273,15 ≤ T, K ≤ 573,15;<br>0,001 ≤ P, MПa ≤ 30; P > Ps;                                                                                       | 0,05 %                                                |
| Воздух         | 200 ≤ T, K ≤ 400 K<br>0,1 ≤ P, MΠa ≤ 20 MΠa                                                                                                   | 0,01 %                                                |
| Перегретый пар | 373,16 ≤ T, K ≤ 873,15;<br>0,001 ≤ P, MПa ≤ 30; P < Ps;                                                                                       | 0,05 %                                                |
| Насыщенный пар | 273,16 ≤ T, K ≤ 573,15;<br>0,001 ≤ P, МПа ≤ 21,5; P = Ps;<br>степень сухости 0,7 ≤ $\chi$ ≤ 1,0;                                              | 0,05 %                                                |

#### Расчетные величины:

- массовый расход:
- объемный расход в рабочих условиях;
- объемный расход в стандартных условиях (только для природного газа и воздуха);
- поддерживаемые сужающие устройства:
  - диафрагма (угловой способ отбора давления);
  - диафрагма (трехрадиусный способ отбора давления);
  - диафрагма (фланцевый способ отбора давления);
  - сопло ИСА 1932;

- эллипсное сопло;
- сопло Вентури;
- труба Вентури с литой необработанной входной конической частью;
- труба Вентури с обработанной входной конической частью;
- труба Вентури со сварной входной конической частью из листовой стали.

# Интерфейсы

В состав модулей входят внешние интерфейсы, приведенные в таблице 9. В комплект с каждым модулем входит ОРС-сервер для интеграции в АСУ ТП.

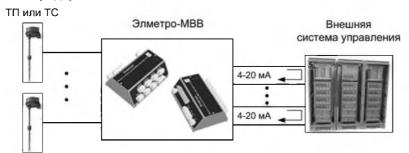
Таблица 9. Интерфейсы, применяемые в модулях

| Интерфейс (параметр)        | Значение        | Примечание                                                         |
|-----------------------------|-----------------|--------------------------------------------------------------------|
| RS-485<br>- скорость обмена | до 234 кбод     |                                                                    |
| - протокол передачи         | Modbus RTU      |                                                                    |
| CAN                         |                 | Может использоваться для связи между модулями и для связи с АСУ ТП |
| Ethernet                    |                 |                                                                    |
| - скорость обмена           | 10/100 Мбит/сек |                                                                    |
| - протокол передачи         | Modbus TCP      |                                                                    |



## Настройка и конфигурирование

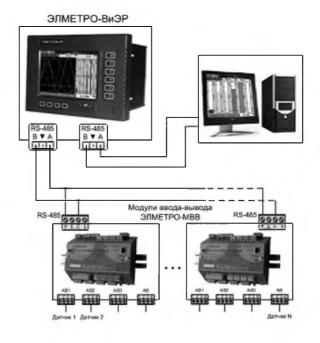
Конфигурирование модуля осуществляется через интерфейс RS-485 посредством персонального компьютера (ПК). В качестве программы конфи-


гурирования используется программа, поставляемая в комплекте с MBB или стандартная программа «HyperTerminal», входящая в состав ОС «Windows».

# Примеры применения:



Распределенная система сбора данных. Модули ввода-вывода собирают данные с различных датчиков, преобразуют и передают по различным интерфейсам на верхний уровень АСУТП (контроллер АСУТП, локальная сеть предприятия, автоматизи-


рованное рабочее место оператора...) При необходимости, модули сигнализируют о неисправностях и/или передают управляющие сигналы на исполнительные механизмы.



Многоканальный нормирующий преобразователь. Модули собирают данные с термопар и/или термосопротивлений и с помощью токовых выходов

передают данные на внешнюю систему управления или регистрации данных.

Распределенная система сбора и регистрации данных. Модули ввода-вывода собирают данные с различных датчиков, преобразуют и передают по RS485-интерфейсу на видеографический регистратор ЭЛМЕТРО-ВиЭР. Регистратор отображает и архивирует все измеренные значения. При необходимости передает данные на верхний уровень АСУТП (контроллер АСУТП, локальная сеть предприятия, автоматизированное рабочее место оператора...)



#### Электрическая изоляция

Электрическая изоляция при температуре окружающей среды (23 $\pm$ 5) °С и относительной влажности 80% выдерживает в течении 1 мин приложенное напряжение 1500В (среднеквадратическое значение) переменного тока частотой от 45 до 65 Гц:

- между цепями питания и выводом заземления;
- между сигнальными входами/выходами, шиной RS-485 и выводом заземления;
- между внешней шиной RS-485 и цепями питания:
- между релейных/симисторных выходов и всех других цепей модуля, а так же между собой.

Межканальная изоляция сигнальных (аналоговых) входов/выходов выдерживает в течение 1 мин приложенное напряжение 500 В (среднеквадратическое значение) переменного тока частотой от 45 до 65 Гц.

# Требования электромагнитной совместимости (ЭМС)

Помехоэмиссия модулей соответствует ГОСТ Р 51317.6.4-99 (МЭК 61000-6.3 -96).

Модули устойчивы к радиочастотным кондуктивным помехам 150к $\Gamma$ ц - 80М $\Gamma$ ц - по  $\Gamma$ ОСТ P 51317.4.6-99 (МЭК 61000-4-6-96) — степень жесткости 2 (3 B/м среднеквадратическое значение). Критерий A.

Модули устойчивы к импульсным микросекундным помехам большой энергии по ГОСТ Р 51317.4.5-99 (МЭК 61000-4-5-95); степень жесткости испытаний 2 (1 кВ) помехи "провод-провод" для сигнальных цепей, при подаче МИП с использованием емкостной связи и добавочного сопротивления 40 Ом (рис. 10 по ГОСТ Р 51317.4.5-99). Критерий В; Степень жесткости испытаний 2 (1 кВ) помехи "провод-земля" для сигнальных цепей, при подаче МИП с использованием емкостной связи и добавочного сопротивления 10 Ом (рис. 7 по ГОСТ Р 51317.4.5-99). Критерий В.

Модули устойчивы к импульсным наносекундным помехам по ГОСТ Р 51317.4.4-99 (МЭК 61000-4-4-95); степень жесткости испытаний 2 (1 кВ). Критерий В.

Модули устойчивы к электростатическим разрядам по ГОСТ Р 51317.4.2-99 (МЭК 61000-4-2-95). Степень жесткости испытаний 2 (4 кВ контакный разряд). Критерий В.

#### Условия эксплуатации

Вид климатического исполнения модулей – УХЛ категории размещения 3 по ГОСТ 15150 (группа исполнения СЗ по ГОСТ 12997) но для работы при температуре от минус 40 до +70 °C и относительной влажности до 80% без конденсации влаги, во всем диапазоне рабочих температур.

По степени защиты от воздействия пыли и воды модули соответствует исполнению IP20 по ГОСТ 14254. МВВ может быть установлен в герметичную коробку IP 65 с кабельными вводами (по отдельному заказу).

Модули устойчивы к воздействию вибрации соответствующей группе N2 по ГОСТ 12997.

#### Macca

Масса регистратора - не более 1,1 кг.

Энергопотребление

Электропитание модулей осуществляется от источника питания постоянного тока напряжением 20...42 В, или через линию Ethernet (PoE), в соответствии с IEEE 802.3af.

Потребляемая мощность 1,5...15 Вт (в зависимости от конфигурации).

#### Надежность

Наработка на отказ - 40 000 ч. Средний срок службы - 8 лет.

### Поверка

Межповерочный интервал 2 года.

#### Гарантийные обязательства

Гарантийный срок эксплуатации – 2 года.

### Пример записи при заказе

Порядок записи условного обозначения модуля заказе и в документации другой продукции, в которой он может быть применен:

| ЭЛМЕТРО-МВВ | - 4AB∏-4AE-Eth | – расход | - box1 | - | Ш |
|-------------|----------------|----------|--------|---|---|
| 1           | 2              | 3        | 4      |   | 5 |

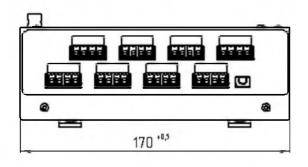
- 1. Тип прибора.
- 2. Код исполнения в соответствии с таблицей 1.
- 3. Функция вычисления расхода по ГОСТ 8.586-2005 (если не требуется поле пропустить).
- 4. Поставка модуля в комплекте с герметичным корпусом IP65 и кабельными вводами (если не требуется поле пропустить):

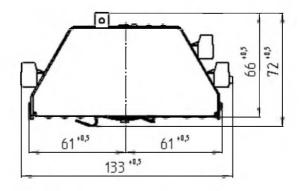
Вох1 – корпус из поликарбоната вариант-1;

Вох2 – корпус из поликарбоната вариант-2.

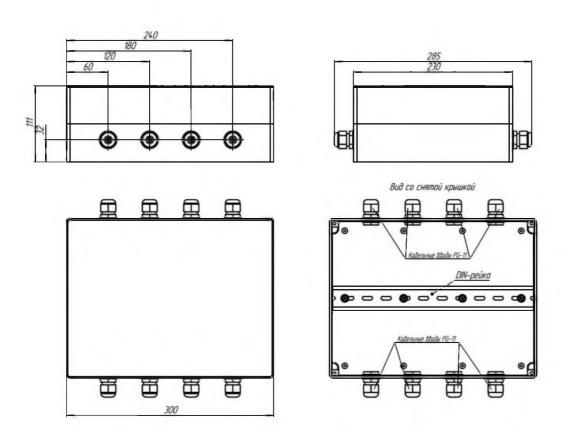
5. Поверка (если не требуется – поле пропустить)

Количество и положение кабельных вводов может быть изменено по желанию Заказчика.

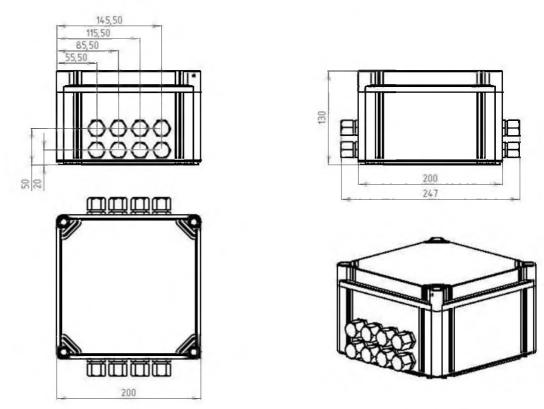

# Пример заказа:


# ЭЛМЕТРО-МВВ-4АВП-4AE-Eth-расход

Модуль ввода-вывода, имеющий 4 аналоговых входа со встроенными источниками питания, 4 токовых выхода и одно выходное реле. Помимо базовых интерфейсов RS-485 (Modbus RTU) и CAN 2.0, имеется Ethernet (Modbus TCP). Питание модуля возможно по линии Ethernet (PoE). С функцией вычисления расхода. Без герметичного корпуса.




# ГАБАРИТНЫЕ РАЗМЕРЫ






# Габаритные размеры модуля ЭЛМЕТРО-МВВ



Дополнительный герметичный корпус из поликарбоната, IP65, вариант 1



Дополнительный герметичный корпус из поликарбоната, IP65, вариант 2

>;3>3@04: (844)2486-6\3>340: (8172)26-41-59 > @>=56: (4\33)20846-\688=1C@3: (343)384-55-89 20=>2>: (4932)77652A:: (3412)26-03-58 070=L: (8438)2085=8\\$12@04: (4012)72-03-81 0;C30: (4842)92-23-67 5<5@>>2>: (3842)65-04\\$462 0\\$42)82-20-61 0;C30: (4842)92-23-67 5<5@>>2>: (3842)65-04\\$462 0\\$42)82-20-81 0;C30: (4842)92-3-67 5<5@>>2>: (4742)52-20-81 03 > A:20 (495)268-04-70 C@ <0=A:: (8152)59-64-93 015@56=K5 '5;\\$16=\\$955\\$22)\\$2\\$2\\$9\\$5\\$24\\$4\\$31)429-08-12 >2>:C7=5F:: (38 >2>A818@A:: (383)227-86-73 @5;: (44286\\$2\\$44-6\5\68-3: (3532)37-68-04 5=70: (8412)22-31-16 5\\$7<2L: (342)205 > AB>2-=0->=C: (863)308-18-15 070=L: (4912)46-61-64 !0<0@0: (846)20\\$6\\$2\\$3\\$6\\$9!-04-6:\\$40\\$1\\$5\\$8\\$0\\$8\\$2\\$3\\$6\\$1-61-63 !0<0@0: (846)20\\$6\\$2\\$3\\$6\\$1-63-31-35 "><A:: (3822)\\$98-41 "N<5=L: (3452)66-21-18 #;L0=>2A:: (8422)24-23-59 #D0 (347)229-48-12 '5;O18=A:: (351)202-03-61 '5@5?>25F: (8202)